\qquad

Using SELCIE to investigate screened scalar field models sourced by complex systems

By C. Briddon, C. Burrage, A. Moss, \& A. Tamosiunas.
University of Nottingham

Is dark energy a scalar field?

- Currently contributes $\sim 70 \%$ of the energy content of the universe.
- Dominates in late time, leading to an accelerating expansion rate.
- One possible explanation is a scalar field (referred to as quintessence).
- Scalar fields coupled to matter are heavily constrained by fifth force experiments.

Deriving the Chameleon (1)

- Start with a scalar field coupled to gravity and perform a conformal transformation ($\hat{g}_{\mu \nu}=A^{2}(\phi) g_{\mu \nu}$) to get the action in the Einstein frame:

$$
S=\int d^{4} x \sqrt{-g}\left(\frac{M_{p l}^{2}}{2} A^{2}(\phi) R-\frac{1}{2} g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-V(\phi)+L_{m}\left(g_{\mu \nu}, \psi_{i}\right)\right)
$$

$$
S=\int d^{4} x \sqrt{-\hat{g}}\left(\frac{M_{p l}^{2}}{2} \hat{R}-\frac{1}{2} \hat{g}^{\mu \nu} \widehat{\nabla}_{\mu} \phi \widehat{\nabla}_{v} \phi-\hat{V}(\phi)+\hat{L}_{m}\left(\hat{g}_{\mu v}, \psi_{i}\right)\right)
$$

Deriving the Chameleon (2)

- Define coupling strength as: $\beta=M_{p l} \frac{A^{\prime}}{A} \quad \begin{gathered}\text { Assume } \\ \text { constant } \beta\end{gathered} \quad A(\phi)=e^{\beta \phi / M_{p l}}$
- The non-relativistic equation of motion of ϕ is:

$$
\square \phi=V_{\text {eff }}^{\prime}(\phi) \quad V_{e f f}(\phi)=V(\phi)+\rho A(\phi)
$$

- If the potential is monotonically decreasing, the field equation will posses a minimum field value.

Chameleon Mechanism

- We will assume a field potential of the form:

$$
V(\phi)=\Lambda^{4}\left(1+\left(\frac{\Lambda}{\phi}\right)^{n}\right)
$$

- The static field equation is therefore:

$$
\nabla^{2} \phi=-\frac{n n^{n+4}}{\phi^{n+1}}+\frac{\beta \rho}{M_{p l}}
$$

- The field value that minimises the potential is then:

$$
\phi_{\min }=\left(\frac{n \Lambda^{n+4} M_{p l}}{\beta \rho}\right)^{1 /(n+1)}
$$

- The corresponding a Compton wavelength of: $\quad \lambda^{2}=\frac{\left(n \Lambda^{n+4}\right)^{1 /(n+1)}}{(n+1)}\left(\frac{\beta \rho}{M_{p l}}\right)^{-\frac{n+2}{n+1}}$
- We see as ρ increases λ deceases leading to the field being screened.

Approximate Analytic Solutions

- These solutions are for highly symmetrical systems such as:
- Spheres $-\phi(r) \approx \phi_{0}-\left(\frac{3}{4 \pi M}\right)\left(\frac{\Delta R}{R}\right) \frac{M_{c} e^{-m_{0}(r-R)}}{r}$
- Cylinders $-\phi(r) \approx \phi_{0}-\frac{\rho_{c} R^{2}}{2 M}\left(1-\frac{S^{2}}{R^{2}}\right) K_{0}\left(m_{0} r\right)$
- Ellipses $-\phi(\xi, \eta) \approx \phi_{0}\left(1-\frac{Q_{0}(\xi)-P_{2}(\eta) Q_{2}(\xi)}{Q_{0}\left(\xi_{0}\right)}\right)$

Constraints on the model

- Chameleon model has become very constrained.
- Only a small region left where $\Lambda=\Lambda_{D E}$.
- Atom interferometry experiment used a spherical source.

What is SELCIE?

- SELCIE (Screening Equations Linearly Constructed and Iteratively Evaluated) is a python package designed to solve the chameleon field equations for arbitrary systems.
- It does this in two parts:
- Mesh generation using the GMSH software (http://gmsh.info/).

- Solves the field equations using FEniCS software (http://fenicsproject.org/).

Rescaled Chameleon equation

- We rescale the values in the equation in units of their vacuum values:

$$
\hat{\rho}=\rho / \rho_{0} \quad \hat{\phi}=\phi / \phi_{\min }\left(\rho_{0}\right) \quad \hat{\nabla}=L \nabla \quad \alpha=\frac{M_{p l} \phi_{0}}{\beta L^{2} \rho_{0}}
$$

- Rescaled field equation is: $\quad \alpha \widehat{\nabla}^{2} \hat{\phi}=-\hat{\phi}^{-(n+1)}+\hat{\rho}$
- A nice way to interpret α is to consider its relation to the rescaled Compton wavelength:

$$
\hat{\lambda}^{2}=\frac{\alpha}{(n+1)} \hat{\rho}^{-\frac{(n+2)}{(n+1)}}
$$

Finite Element Method (FEM)

- To solve equations of the form $\nabla^{2} u(x)=f(x)$, use Green's function (with zero field gradient at the boundary) and discretise the field. The problem can then described by a linear matrix multiplication.

$$
\begin{gathered}
\int_{\Omega} \nabla u \cdot \nabla v_{j} d x=\int_{\Omega} f(x) v_{j} d x \quad u(x)=\sum_{i} U_{i} e_{i}(x) \\
\sum_{i}\left(\int_{\Omega} \nabla e_{i} \cdot \nabla v_{j} d x\right) U_{i}=\int_{\Omega} f(x) v_{j} d x \\
M U=F
\end{gathered}
$$

Solving the equations (Picard method)

- Expand the nonlinear part around $\hat{\phi}_{k}$:

$$
\begin{aligned}
& \hat{\phi}^{-(n+1)}=\hat{\phi}_{k}^{-(n+1)}-(n+1) \hat{\phi}_{k}^{-(n+2)}\left(\hat{\phi}-\hat{\phi}_{k}\right)+\mathcal{O}\left(\hat{\phi}-\hat{\phi}_{k}\right)^{2} \\
& \hat{\phi}^{-(n+1)} \approx(n+2) \hat{\phi}_{k}^{-(n+1)}-(n+1) \hat{\phi}_{k}^{-(n+1)} \hat{\phi}
\end{aligned}
$$

- We then solve for $\hat{\phi}$ around some $\hat{\phi}_{k}$.
- Perform update $\hat{\phi}_{k+1}=\omega \hat{\phi}+(1-\omega) \hat{\phi}_{k}$.
- Repeat from first step until convergence.

$3 D \rightarrow 2 D$

- When evaluating a 2D mesh we need to impose a symmetry.

$$
d^{3} x=\sigma d^{2} x
$$

- Some examples include:

- Vertical axis-symmetry - $\sigma=|x|$
- Horizontal axis-symmetry $-\sigma=|y|$
- Cylindrical $-\sigma=1$

Example Code - Mesh Generating

MT = MeshingTools(dimension=2)
\# Construct source.
MT.points_to_surface(horseshoe())
MT.create_subdomain(CellSizeMin=5e-4, CellSizeMax=0.1,
DistMax=0.5)
\# Place source in vacuum chamber.
MT.create_background_mesh(CellSizeMin=1e-3, CellSizeMax=0.1,
DistMax=0.5, background_radius=1.5, wall_thickness=0.1)

\# Make mesh.

MT.generate_mesh(filename= "horseshoe", show_mesh=True)
MT.msh_2_xdmf(filename = "horseshoe")

Example Code - Solving the Field Equation

```
# Set parameters.
n=1
alpha = 1.0e18
# Define density profile.
p = DensityProfile(filename="horseshoe", dimension=2,
    symmetry='cylinder slice', profiles=[source, vacuum, wall])
# Solve for the gradient of the field.
s = FieldSolver(alpha, n, density_profile=p)
s.picard()
s.calc_field_grad_mag()
print(s.field_grad_mag(X[0], X[1])) # 8.55e-07
# Plot results.
s.plot_results(field_scale='log', grad_scale='log')
plt.plot(X[0], X[1], 'rx')
```


Test - Sphere \& Cylinder

Sphere

$$
\hat{\phi}(\hat{r}) \approx 1-\frac{\hat{R}}{\hat{r}} e^{-(\hat{r}-\hat{R}) \sqrt{\frac{(n+1)}{\alpha}}}
$$

Cylinder

$$
\hat{\phi}(\hat{r}) \approx 1-\frac{\mathcal{K}_{0}\left(\hat{r} \sqrt{\frac{(n+1)}{\alpha}}\right)}{\ln \left(\frac{4 \alpha}{(n+1) \hat{R}}\right)}
$$

Test - Ellipse

Ellipsoid

$$
\hat{\phi}(\xi, \eta) \approx \hat{\phi}_{0}\left(1-\frac{Q_{0}(\xi)-P_{2}(\eta) Q_{2}(\xi)}{Q_{0}\left(\xi_{0}\right)}\right)
$$

$$
\xi_{0}=1.75
$$

Test - Empty vacuum chamber

- For large α the field will not reach its maximum inside an empty chamber. Recall: $\hat{\lambda}_{0}{ }^{2}=\frac{\alpha}{(n+1)}$
- Therefore, $\hat{V}_{e f f} \approx \hat{\phi}^{-(n+1)}$.
- E.O.M. is independent of α for:

$$
\hat{\varphi}=\alpha^{1 /(n+2)} \hat{\phi}
$$

The chameleon of a chameleon

Other Examples

Measuring the fifth force

- We are interested at the fifth force a distance d from the source.
- We therefore define a boundary where to measure.

Legendre Polynomial Basis

- Legendre polynomials are solutions to:

$$
\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 P_{n}^{\prime}(x)+n(n+1) P_{n}(x)=0
$$

- Examples include:
- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$

- Forms a basis between $(-1,1)$:

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{1}{2 n+1} \delta_{n m}
$$

Legendre Polynomial shapes

- We used shapes defined by:

$$
R(\theta)=\sum_{n=0}^{N} a_{n} P_{n}(\cos (\theta))
$$

- Some examples:

Genetic Algorithm

- A minimising/maximising algorithm based on organic evolution.
- Consists of 3 part:

Best shape ($\mathrm{Nc}=4, \mathrm{~V}=0.01$)

$$
\hat{F}=4.64 e-6
$$

Best shape ($\mathrm{Nc}=10, \mathrm{~V}=0.01$)
 $$
\widehat{\mathrm{F}}=4.95 e-6
$$

Best shape ($\mathrm{Nc}=10, \mathrm{~V}=0.02$)

$$
\widehat{\mathrm{F}}=4.92 e-6
$$

Magnitude of Field Gradient

Magnitude of Field Gradient

Magnitude of Field Gradient

Magnitude of Field Gradient

Cutting off mass

Current/Future works

- Investigate general trends between classes of shapes.
- Introduce Neumann boundary conditions
- Developing a symmetron version (possibility of making methodology work for other models).
- Working to add time-dependence/dynamic meshes.

Thank you for listening

ArXiv: arXiv:2110.11917, arXiv:2206.06480, arXiv:2108.10364
Github: GitHub - C-Briddon/SELCIE

